第1章 問題3 解答

直角座標と極座標の関係 \begin{equation} x=r\cos\theta,\quad y=r\sin\theta \end{equation} 速度の関係 \begin{equation} u=v_r\cos\theta-v_\theta\sin\theta,\quad v=v_r\sin\theta+v_\theta\cos\theta\label{vel-x} \end{equation} \begin{equation} v_r = u\cos\theta+v\sin\theta,\quad v_\theta=-u\sin\theta+v\cos\theta\label{vel-r} \end{equation} 微分演算子の関係 \begin{eqnarray} \frac{\partial}{\partial r} &=&\frac{\partial}{\partial x}\frac{\partial x}{\partial r} +\frac{\partial}{\partial y}\frac{\partial y}{\partial r} =\frac{\partial}{\partial x}\cos\theta +\frac{\partial}{\partial y}\sin\theta\label{par-r}\\ \frac{\partial}{r\partial \theta} &=&\frac{1}{r} \left(\frac{\partial}{\partial x}\frac{\partial x}{\partial \theta} +\frac{\partial}{\partial y}\frac{\partial y}{\partial \theta}\right) =\frac{1}{r}\left(\frac{\partial}{\partial x}(-r\sin\theta) +\frac{\partial}{\partial y}r\cos\theta\right)\nonumber\\ &=&-\frac{\partial}{\partial x}\sin\theta+\frac{\partial}{\partial y}\cos\theta \label{par-theta} \end{eqnarray} 式\eqref{par-r}$\times\cos\theta$-\eqref{par-theta}$\times\sin\theta$より \begin{equation} \frac{\partial }{\partial x}=\frac{\partial }{\partial r}\cos\theta- \frac{\partial }{r\partial\theta}\sin\theta \label{par-x} \end{equation} 式\eqref{par-r}$\times\sin\theta$+\eqref{par-theta}$\times\cos\theta$より \begin{equation} \frac{\partial }{\partial y}=\frac{\partial }{\partial r}\sin\theta- \frac{\partial }{r\partial\theta}\cos\theta \label{par-y} \end{equation} 式\eqref{vel-x}と微分演算子\eqref{par-x},\eqref{par-y}より \begin{eqnarray} \frac{\partial u}{\partial x} &=&\left(\frac{\partial}{\partial r}\cos\theta -\frac{\partial}{r\partial\theta}\sin\theta\right) (v_r\cos\theta-v_{\theta}\sin\theta)\nonumber\\ &=&\frac{\partial v_r}{\partial r}\cos^2\theta -\frac{\partial v_{\theta}}{\partial r}\cos\theta\sin\theta -\frac{\partial v_r}{r\partial\theta}\sin\theta\cos\theta +\frac{v_r}{r}\sin^2\theta +\frac{\partial v_{\theta}}{r\partial\theta}\sin^2\theta +\frac{v_\theta}{r\partial\theta}\sin\theta\cos\theta \label{par-u-x}\\ \frac{\partial v}{\partial y} &=&\left(\frac{\partial}{\partial r}\sin\theta +\frac{\partial}{r\partial\theta}\cos\theta\right) (v_r\sin\theta+v_{\theta}\cos\theta)\nonumber\\ &=&\frac{\partial v_r}{\partial r}\sin^2\theta +\frac{\partial v_{\theta}}{\partial r}\sin\theta\cos\theta +\frac{\partial v_r}{r\partial\theta}\cos\theta\sin\theta +\frac{v_r}{r}\cos^2\theta +\frac{\partial v_{\theta}}{r\partial\theta}\cos^2\theta -\frac{v_\theta}{r\partial\theta}\cos\theta\sin\theta \label{par-v-y} \end{eqnarray} 直角座標の連続の式 \begin{equation} \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} +\frac{\partial w}{\partial z}=0 \end{equation} に,式\eqref{par-u-x},\eqref{par-v-y}を代入して,極座標における連続の式が得られる. \begin{equation} \frac{\partial v_r}{\partial r}+\frac{v_r}{r} +\frac{1}{r}\frac{v_{\theta}}{\partial\theta} +\frac{\partial w}{\partial z} =0 \end{equation} すなわち \begin{equation} \frac{1}{r}\frac{\partial}{\partial r}(rv_r) +\frac{1}{r}\frac{\partial v_{\theta}}{\partial \theta} +\frac{\partial w}{\partial z} =0 \end{equation}